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We characterize the topology of the phase space of the Berlin-Kac spherical model
in the context of the so called Topological Hypothesis, for spins lying in hypercubic
lattices of dimension d. For zero external field we are able to characterize the topology
exactly, up to homology. We find that, even though there is a continuum of changes in
the topology of the corresponding manifolds, for d ≥ 3 there are abrupt discontinuities
in some topological functions that could be good candidates to associate with the
phase transitions that occur at the thermodynamic level. We show however that these
changes do not coincide with the phase transitions and conversely, that no topological
discontinuity can be associated to the points where the phase transitions take place. At
variance with what happens in the Mean Field version of this same model, we show that
these abrupt topological changes are accessible thermodynamically. We conclude that,
even in short range systems, the topological mechanism does not seem to be responsible
for the triggering of a phase transition. We also analyze the case of spins connected to
a macroscopic number of (but not all) neighbors, and find that, similar to the results
found for the fully connected version, in this case the topological hypothesis seems
to hold: the phase transition coincides with an accumulation point of the topological
changes present in configuration space. The question of the ensemble equivalence in
the short range spherical model is also considered.

KEY WORDS: topology, statistical mechanics, spherical model, toplogical hypothesis,
ensemble equivalence

1. INTRODUCTION

Phase transitions (PTs) remain one of the most intriguing and interesting phenom-
ena in physics. One of the aims of statistical mechanics has been to be able to

1 Departamento de Fı́sica Estadı́stica, Centro Atómico Bariloche (R8402AGP) San Carlos de Bariloche,
Argentina; e-mail: srisau@cab.cnea.gov.ar

2 Departamento de Fı́sica, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970, Porto
Alegre, Brazil; e-mail: anacarol@if.ufrgs.br, stariolo@if.ufrgs.br

1231

0022-4715/06/0900-1231/0 C© 2006 Springer Science+Business Media, Inc.



1232 Risau-Gusman, Ribeiro-Teixeira and Stariolo

characterize and predict the conditions for the occurrence of PTs for very distinct
theoretical models. Mathematically, a phase transition is signaled by the loss of an-
alyticity of some thermodynamic function. (1,2) Because it is based on the analysis
of thermodynamic functions, this characterization of PT’s is a macroscopic one.
From a more fundamental point of view one would like to investigate whether a
microscopic characterization exists, that can emerge directly from the microscopic
interactions, i.e., prior to any definition of statistical measure. If such a character-
ization were possible, it could eventually enable one to classify the microscopic
interactions among those leading to continuous or discontinuous phase transitions,
or no phase transitions at all.

Recently, a new characterization of PTs has been put forward, (3) that aims at
detecting the PTs directly at the level of the phase space topology of the system.
Notice that in this case one is studying the problem at a more fundamental level,
and it is not necessary to resort to thermodynamics or statistical ensembles. In this
new method one studies the topology of the configuration space � of the system,
defined by the potential energy function V (x) and determining the changes that take
place in the potential energy submanifolds (PES) Mv = {x ∈ � : V (x)/N < v} as
the parameter v is increased. A topological transition (TT) is said to take place at c
if the manifolds Mc−ε and Mc+ε are not homeomorphic. The idea is that somehow
TTs must be related to PTs. In Ref. 4 it is stated that “at their deepest level PTs of
a system are due to a change of the topology of the configuration space.” This is
known as the Topological Hypothesis. Notice that even if a TT at a certain v can
be unambiguously related to a PT, one still needs to resort to thermodynamics to
determine at which temperature this v is reached.

The relationship between PTs and TTs has been studied for several models
in the last years. It has been shown that interesting differences arise in this relation
between systems with long range interactions (i.e. in the Mean Field (MF) limit)
and the Short Range (SR) versions of them. For example, in the XY model (4)

TTs are found both in the MF and the SR version in dimension d = 1, whereas
a PT is present only in the MF case. This fact made clear that probably only
some class of topology changes could be responsible for the triggering of a phase
transition, it was necessary to better characterize the TT’s in order to understand
under what conditions these can induce or be correlated with PTs. Using the
changes in the Euler characteristic as a quantitative measure of a TT, it was found
that a macroscopic change happens in the MF model at exactly the same point
(potential energy level) where statistical mechanics predicts a phase transition,
while such an abrupt topology change is absent in the one-dimensional model. In
a similar mean field model, called k-trigonometric, (5) the topological hypothesis
seems to work even in the case of first order transitions. Nevertheless, ensemble
equivalence is not fulfilled for this case, as expected, and, moreover, the definition
of the transition point in energy becomes ambiguous for first order PTs. Hence,
the connection with the topology changes is not straightforward. (6)
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For the lattice φ4 model, numerical work has shown a correlation between
TTs and PTs in the SR version in dimension d = 2. (7) In the mean field version
both TTs and PTs exist but they do not coincide(8,9) (in Ref. 8 however, it is
suggested that TTs could be related to the properties of the inherent saddles of the
potential energy landscape).

In these works the characterization of the phase space is done using the
index (i.e. the number of negative eigenvalues of the Hessian) of the critical
points of the potential energy function. These can be indirectly related to the
topology through Morse theory. (10) In the frame of this theory the only topological
invariant that can be directly calculated is the Euler characteristic, which is not
enough to determine the topology of the space (not up to homology, at least). The
characterization through the Euler characteristic limits the topological approach.
One of the questions that remains is, for example, whether PTs can be related to a
change in a different invariant.

A somewhat different approach was followed in two recent works on non-
confining, short ranged, potentials. For these functions, one of the possible topo-
logical transitions is the loss of compactness of the manifold at a certain v. For a
model of DNA denaturation it was shown that this loss of compactness induces a
PT. (11) On the other hand, for one of the variants of the Burkhardt model (12) the
breaking of compactness was shown to be insufficient to induce a PT.

In an important contribution, (13) Franzosi, Pettini and Spinelli have proved
that for smooth, confining, stable and short ranged potentials, a TT is a necessary
condition for the appearance of a PT. This general and important result loses part
of its relevance for short ranged systems for which in the limit of infinite size there
is a continuum of TTs, as is the case of the potentials mentioned.

In the mean field version of the spherical model, (14) a correlation was found
between the TT and the PT. Interestingly, in the case of nonvanishing external
field there is no PT, but the phase space displays a TT at energies that cannot be
thermodynamically reached. More recently, Kastner (6) showed that this behavior
could be understood by noting that the model has partial equivalence of ensembles:
whereas in the canonical ensemble there is a continuous phase transition, in the
more fundamental microcanonical ensemble there is no phase transition within
the allowed support of the entropy function.

In a recent letter (15) we addressed the case of the short range spherical
model. (16) We showed that the phase transitions occurring for d ≥ 3 cannot be
related to any particularly strong change in the homology of the potential energy
manifolds at vc. On the other hand, we showed that the phase space has some
rather abrupt changes in topology that are not related to PTs.

Here we present a detailed derivation of the results advanced in Ref. 15.
Using tools from topology theory and taking profit of the relative simplicity of the
phase space of the spherical model, we are able, in the case of vanishing field, to
determine its topology exactly (up to homology). For nonvanishing field we cannot
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characterize the topology completely for all v, but we are at least able to show that
a very abrupt change in the topology happens that does not have a corresponding
PT. At variance with what happens for the MF version these topological changes,
although unrelated to the PTs, are thermodynamically accessible.

In Sec. 2 the d-dimensional nearest neighbors spherical model is introduced.
In Sec. 3 we review the relevant facts of the thermodynamics of the model, that
was studied in depth by Berlin and Kac in their seminal work. (16) The model
displays a phase transition only in the case of d ≥ 3 and vanishing field. In
Sec. 4 we study the topology of phase space, showing that the manifolds Mv are
homotopically equivalent to spheres whose dimension can be related to the index
of the critical solutions. We show that some derivatives of the index, as a function
of v, display several discontinuities. We argue that these points of discontinuity are
the likely candidates to be identified with PTs, in case these latter were present.
However, it is shown that none of them correspond to the PTs observed for
d ≥ 3. Furthermore, it is also shown that when an external field is turned on,
there appear abrupt discontinuities in the index itself. But no PT is associated
to this abrupt topological changes. In Sec. 5 we prove the equivalence between
the microcanonical and canonical ensembles for the short range spherical model
and, therefore, the same conclusions regarding the lack of correlation between
the topological mechanism and the PTs apply to the microcanonical ensemble. In
Sec. 6 we briefly comment on the case of long range connections that do not span
the whole system. In the last section some conclusions and perspectives for future
reasearch are drawn.

2. THE MODEL

The spherical model is defined by N spins placed in a d-dimensional lattice,
whose potential energy in an external field H is given by:

V = −1

2

∑

i j

Ji j εiε j − H
∑

i

εi , (1)

where the interaction matrix element Ji j gives the strength of the interaction
between spins i and j . The spin variables are real and are constrained to lie on
the sphere � = S

N−1 = {ε ∈ R
N :

∑
i ε2

i = N }. This is equivalent to considering
that the potential is infinite outside this sphere.

Since the work of Berlin and Kac(16) in which they study hypercubic lat-
tices of spins connected to their first neighbours, the thermodynamics of this
system has been studied also for other choices of the interaction matrix. (17,18)

In Sec. 6 we briefly comment the case of lattices with macroscopic but not full
connectivities (the topology of the fully connected model has already been studied
in Ref. 14).
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3. THERMODYNAMICS

For a detailed discussion of the thermodynamics of the spherical model the
reader is refered to the original work of Berlin and Kac. (16) Here we only quote the
main points relevant to our analysis of the topology of this model. In a hypercubic
lattice in d dimensions each spin interacts only with its 2d closest neighbours. The
strength of the pairwise interaction is given by J . The thermodynamic functions
can be obtained from the (configurational) partition function, defined as:

QN (β, H ) = A−1
N

∫

SN−1

dε1, . . . , dεN exp (−βV (ε1, . . . , εN )), (2)

where AN is just the surface of the (N − 1)-dimensional sphere (with radius
√

N )
and accounts for the proper normalization of the partition function.

After some algebra (16) one arrives at an integral over a parameter z which, in
the limit of large N can be evaluated using the saddle point method. The saddle
point equation is:

4K = d fd (z)

dz
+ K (H/J )2/(z − λ1/2) (3)

where K = β J/2, λ1 is the largest eigenvalue of the adjacency matrix of the
lattice, and fd (z) is defined by

fd (z) = lim
N→∞

N−1
N∑

j=2

ln(z − λ j/2)

= (2π )−d

∫ 2π

0
dω1, . . . , dωd ln

(
z −

d∑

i=1

cos ωi

)
(4)

where d is the dimension of the lattice, and 2
∑d

i=1 cos ωi = λ(ω) are the eigenval-
ues of the adjacency matrix in the infinite N limit. The critical temperature, when
it exists, is the one obtained from Eq. (3) for the saddle point solution zc = λ1/2.
It is easy to show that for a nonvanishing field, this solution implies K → ∞,
i.e. Tc = 0, meaning that in this case no phase transition is possible at any d. For
temperatures larger than the critical, there is always a solution z > λ1/2. For van-
ishing external field there can be a finite critical temperature. For T < Tc, it can be
shown that the saddle point ‘sticks,’ i.e., z = λ1/2 for all values of T smaller than
the critical. For d = 3 a transition appears at Tc = 3.9533J/k, whereas for d = 1
and d = 2, Tc = 0. For d > 3 a phase transition appears at a critical temperature
Tc(d), which is a strictly increasing function of d (see Table I).
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Table I. Critical values of the temperature (Tc) and

the corresponding mean potential energy per particle

(〈vc〉) for hypercubic lattices in d dimensions

d kTc/J 〈vc〉 /J

3 3.9573 −1.0216
4 6.4537 −0.7728
5 8.6468 −0.6759
6 10.7411 −0.6283
7 12.7982 −0.6009
8 14.8334 −0.5833
9 16.8579 −0.5710

The free energy per particle, f , for vanishing field is given by:

−β f =
{

2K z − 1
2 − 1

2 ln(4K ) − 1
2 fd (z) for T > Tc

2d K − 1
2 − 1

2 ln(4K ) − 1
2 fd (d) for T < Tc

(5)

And for nonvanishing external field:

−β f = 2K z − 1

2
− 1

2
ln(4K ) − 1

2
fd (z) + K (H/J )2

(z − λ1/2)2
. (6)

It can be seen that the only singularity of the free energy occurs for zc =
λ1/2 = d, in the absence of external field. Thus, the presence of a phase transition
is determined by inserting this condition into the saddle point equation Eq. (3)
which must then be solved for Kc = K (zc = d) in order to determine Tc. The
saddle point equation can be rewritten in a more convenient form: (19,20)

4K =
∫ ∞

0
ds e−z s[I0(s)]d (7)

where I0(s) is the modified Bessel function of zero order.
As in previous works, the thermodynamic function that we will use to perform

the comparison between the statistical mechanics and the topological approaches is
the average potential energy per particle 〈v〉. For the spherical model, the averaging
in the canonical framework yields

〈v〉 =

⎧
⎪⎪⎨

⎪⎪⎩

J
4K − J z + H 2/4J

z−λ1/2 for H 	= 0,∀T
J

4K − J z for H = 0, T > Tc

J
4K − Jd for H = 0, T < Tc

(8)

In Table I we show some values of the critical temperature with the corre-
sponding values of 〈vc〉. It can be shown that 〈vc〉 → −1/2 for large enough d. (20)
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Although the specific details of the potential energy per particle depend on the
dimensionality of the lattice, some features can be found that are common to all
hypercubic lattices. In the limit of T → ∞ the potential energy always vanishes.
In the opposite limit (T → 0) the potential energy falls to its smallest possible
value 〈v0〉 = −d. The phase transition in this model, when it occurs, is continuous.

4. TOPOLOGY

In the topological approach to phase transitions (3) one analyzes the topology
of the submanifolds Mv looking for changes in their topology as v is increased. The
PES Mv is that region of the configuration space that satisfies V (ε1, . . . , εN )/N ≤
v. A topological transition happens at a certain value vT T if the manifolds MvT T −ε

and MvT T +ε are not homeomorphic (21) for arbitrarily small ε.
The relation between the PES and the thermodynamics of a system is not

straightforward. To make a connection with statistical mechanics, Casetti et al.
made the nontrivial ansatz that v can be identified with 〈V 〉/N, the thermodynami-
cal average of the potential energy per particle. Making use of this correspondence,
for a general class of potentials, Franzosi et al. (13) showed that phase transitions
can only happen at points where there is a topological change. Thus, this is a
necessary but not a sufficient condition. Since then, several models have been
studied in order to find sufficiency conditions. (5,8,9,11,12,14) Nevertheless, most of
these models are mean field in nature and thus violate at least one of the conditions
of the theorem of Franzosi et al. The spherical model considered here, while a
short range one, does not obey additivity as a consequence of the spherical con-
straint (see the discussion in Sec. 7). We will show that it is in agreement with the
implications of the theorem, but nevertheless, our results lead to the inexistence
of a general sufficiency condition as pointed out above.

To study the topology of the phase space, it is most convenient to write the
potential using the coordinates that diagonalize the interaction matrix through an
orthogonal transformation (we set J = 1):

V = −1

2

N∑

i=1

λi x2
i −

√
N x1 H (9)

where λi , (i = 1, . . . , N ), are the eigenvalues of the interaction matrix, ordered
from largest to smallest. In general, these eigenvalues will be degenerated. We
define the sets Ca , a = 0, . . . , N̂ , where N̂ + 1 is the number of distinct eigenval-
ues. Ca is the set containing the indices of the eigenvalues that have the (a + 1)-th
largest value. Therefore, |Ca| gives the degeneracy associated to the (a + 1)th
largest eigenvalue. The Frobenius-Perron theorem ensures that the largest eigen-
value is not degenerated, i.e. C0 = {1}.
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The critical points of the potential energy function on the sphere are found
using Lagrange multipliers. The critical point equations are:

x1(2µ + λ1) +
√

N H = 0

xi (2µ + λi ) = 0, i = 2, . . . , N

N∑

j=1

x2
j = N (10)

where µ is the Lagrange multiplier that results from enforcing the spherical
constraint. From these equations and Eq. (9), N̂ + 1 critical solutions are obtained,
whose potential energies are denoted va , a = 0, . . . , N̂ (ordered from smallest to
largest). Each va corresponds to a different set of eigenvalues, namely va = h(λ j ),
with j ∈ Ca , and h(λ j ) = −λ j/2 for H = 0, and h(λ j ) = −λ j/2 + H 2/2(λ1 −
λ j ) for finite H .

Notice that the degeneracy of the eigenvalues causes that the corresponding
critical points be in fact critical submanifolds. This implies that in the directions
tangent to the critical submanifolds the Hessian vanishes, which in turn implies
that the potential is not a proper Morse function. But, using spherical coordinates, it
can be shown that V (x1, . . . , xN ) is nondegenerate in Bott’s extended sense: (22) the
Hessian does not vanish in the directions normal to the critical submanifolds. More
precisely, the Hessian has

∑a−1
b=0 |Cb| negative eigenvalues when restricted to the

submanifold normal to the ath critical submanifold, i.e., at the critical energy va .
This number is denoted the index of the critical submanifold. This generalizes to
critical submanifolds the definition of index of a saddle point. Using this extension
of Morse theory the Euler characteristic can be found exactly. However, profiting
from the symmetry of the spherical model, we prefer to take a more direct route to
study its topology. As we show below, for vanishing external field it is possible to
characterize completely the topology of the Mv , by explicitly giving the values of
all the Betti numbers. Notice that this is much more than what is possible within
Morse theory, because from it one can only obtain the alternate sum of the Betti
numbers (i.e. the Euler characteristic), or bounds for them. (10)

In the next two subsections we analyze, respectively, the cases of H = 0 and
H > 0.

4.1. H = 0

For H = 0 the critical manifolds �va , a = 1, . . . , N̂ , are given by �va =
{x ∈ � :

∑
i∈Ca

x2
i = N }. These are (hyper)spheres whose dimension is given by

the degeneracy of the corresponding eigenvalues.
To understand the nature of the topological change that happens at a critical

value of v it is necessary to know the topology of the submanifolds Mv for values
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of v between two critical values. In Appendix A we show that in the interval
(va, va+1) all the submanifolds are homotopy equivalent to S

Da−1, which is the
Da-dimensional sphere, with Da = ∑a

b=0 |Cb|. It must be stressed that the sub-
manifolds Mv are always N -dimensional, (23) and therefore they are never identical
to S

Da−1. Homotopy equivalence implies the isomorphism of the homology groups
of the manifolds compared. (24) Therefore, the Betti numbers of the manifolds Mv

in the interval (va, va+1) are:

bi (Mv) =
{

1 for i = 0 and i = ∑a
b=0 |Cb| − 1 = Da − 1

0 otherwise
(11)

This shows that at each va a topological transition occurs that changes the
topology of the phase space from one homotopically equivalent to S

Da−1−1 to one
homotopically equivalent to S

Da−1. In terms of the Betti numbers, each transition
changes the Betti numbers at most from 0 to 1. Thus, at variance with what happens
in other models (e.g. the XY model studied in Ref. 4), the magnitude of the Betti
numbers is not a useful quantity to characterize the topological transition. More
information is given by Da − 1, the highest index of the Betti number that changes
at each transition, i.e. the dimension of the deformation retract of the manifolds.
As shown above, the increase of this number at each transition is given by the
degeneracy of the corresponding eigenvalue. If the degeneracy of the eigenvalues
is o(N ), in the N → ∞ limit Da is equivalent to the index of the critical manifolds,∑a−1

b=0 |Cb|. Since the manifolds Mv are always homotopy equivalent to spheres
whose dimension changes with v, the knowledge of Da as a function of v implies
the complete knowledge of the topology, up to homology.

As happens with other short range potentials, in the spherical model it can
be shown that, if each spin interacts only with spins at a distance O(

√
N ) (or

smaller) in the lattice, and there is translational symmetry, the spectrum of eigen-
values is continuous in the N → ∞ limit. (25) This implies that the set of N̂ + 1
critical energies, in this limit, will be dense in [−d, d), the interval of allowed
potential energies. As a consequence, for infinite size systems and considering
that Da is O(N ), it is convenient to introduce a continuous and normalized ver-
sion of Da , d(v) = Da/N , and also a degeneracy density c(v). They are re-
lated by c(v) = ∂d(v)

∂v
. In the following we concentrate on the properties of these

quantities.
We specialize to the case of cubic lattices in d dimensions where the spins

interact isotropically only with their first 2d neighbours. In principle, this analysis
can be extended to any other short range version, with the conditions mentioned
above.

The spectrum of the adjacency matrix of the lattice is given by:

λ(p) = 2
d∑

i=1

cos(2πpi/N 1/d ), pi = 0, . . . , N 1/d − 1 (12)
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Because of the translational symmetry of the potential, each eigenvalue is at
least 2d -fold degenerate. The degeneracy density c(v), in the infinite size limit, is
given by:

1

N

∑

p

δλ(p),−2v
N→∞−→

c(v) =
∫ 2π

0

(
�d

i=1

dωi

2π

)
δ(v + λ(ω)/2)

=
∫ ∞

0

dx

π
cos(x v)(J0(x))d (13)

where the delta functions in the first and second lines are a Kronecker and Dirac
one, respectively, λ(ω) = 2

∑d
i=1 cos (ωi ), and J0(x) is the Bessel function of

zeroth order (in Fig. 1 we plot c(v) and d(v) for d = 2, d = 3 and d = 4). In
the Appendix B we show that the integral converges uniformly for all values of
d and therefore c(v) is a continuous function. The derivatives with respect to v

can be obtained by performing the derivative inside the integral. But, as this is
only valid if the resulting integral converges, this procedure allows us to obtain
only the first �(d − 1)/2
 derivatives. But this will be enough for our purposes.
In the appendix we show that all these derivatives are continuous, except for the
last, which is discontinuous only at the following points: at odd values of v if
d is odd, at values of v such that v/2 is even if d/2 is odd and such that v/2
is odd if d/2 is even. But these values are clearly different from the ones at
which a thermodynamical phase transition takes place, for all values of d (see
Table I). Note that, trivially, the manifolds Mv display TTs at the points 〈vc〉
where PTs occur, since there is a continuum of TTs. Most of these TTs, however,
are not particularly abrupt or strong. And those that can be considered abrupt
do not coincide in its value with the PTs, as we have shown above. This proves
that up to the �(d − 1)/2
 derivative there is no particular correlation between
TTs and PTs.

The only possibility left to look for a relationship between topological tran-
sitions (in the sense of a discontinuity of some function of the topology of the
potential) and thermodynamical phase transitions would be in the higher deriva-
tives of c(v), which cannot be studied by exchanging the integral and derivative
operations. This possibility seems to us rather unreasonable, because it would im-
ply not only that the derivative where discontinuities are to be looked for depends
on the dimension of the lattice, but also that those discontinuities present in earlier
derivatives should be disregarded.

We have thus shown that discontinuities in the derivative of c(v) are not
sufficient to induce a PT. Furthermore, we will show in the following that, even
though in the case of a nonzero external field there appear discontinuities in the
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Fig. 1. Degeneracy density c(v) and relative index d(v) of the critical manifolds, for a vanishing
external field.

function c(v) itself, no connection between such TTs and PTs can exist, simply
because the model does not display any PTs at all.

4.2. H �= 0

In the case of nonvanishing field it is not so easy to find the homotopy type
of the submanifolds Mv , because of the break of the symmetry introduced by the
external field term in the hamiltonian. Nevertheless, using Morse theory it is at
least possible to establish the homotopy type of the submanifolds up to above the
second smallest critical energy, where an abrupt topological change is shown to
take place.

According to Morse theory, the manifolds Mv of a smooth function are
homeomorphic for all v ∈ (a, b) if there are no critical points in this interval. If
there is one critical point at c ∈ (a, b), the manifold Mc+ε is homeomorphic to
Mc−ε ∪ ek , where ek is a k-cell. In other words, at the critical point a k-cell (i.e. a
k-dimensional open disk) is attached to the manifold. k is the index of the critical
point, defined as the number of negative eigenvalues of the Hessian at that point.
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Returning to the critical point equations (10), with λi given by (12), from
the solutions x1 	= 0, xi = 0,∀i > 1 we get two critical values of the potential
energy function. The first one, v+ = −(λ1/2 + H ) is the smallest critical energy,
corresponding to the critical point x+ = (−√

N , 0, . . . , 0) (H > 0). The second
smallest critical value, v− = −(λ1/2 − H ), corresponds to the critical solution
x− = (+√

N , 0, . . . , 0). Other solutions, with xi 	= 0 for some values of i > 1,
arise at critical values va = −λk/2 + H 2/2(λ1 − λk), where k ∈ Ca, a ≥ 2. The
corresponding critical point solutions only lie on the sphere S

N−1 for k such that
λ1 − λk > H . Notice that there is a threshold energy vth above which the levels
have been shifted by an amount H 2/2(λ1 − λk) – with respect to the case of
vanishing H – and below which the critical values have been supressed (i.e. they
are no longer critical).

The Hessian, calculated on the spherical surface S
N−1 at the critical points

x± is a diagonal matrix whose eigenvalues are V ±
i i = λ1 ± H − λi . Therefore, at

these two points the Hessian is not singular (except for some particular values
of H ), which implies that x± are non-degenerate critical points. Since λ1 is the
largest eigenvalue, for v+ all V +

i i are positive. This was to be expected because
x+ is the absolute minimum of the potential. Topologically this means that for
v+ < v < v−, Mv is homotopically equivalent to a disk, i.e. to the 0-cell attached
to the empty manifold at v+.

As for the nature of the critical point x− at v−, it depends on the field strength.
If H is such that the second largest eigenvalue λk ∈ C2 obeys λk < λ1 − H , then
x− is also a minimum. Thus, if v2 is the next critical value, for v ∈ (v−, v2), Mv is
homotopically equivalent to the union of two disks. We have shown, however, that
for large values of N the spectrum of the adjacency matrix becomes dense, which
implies that a certain number n = max{k : λk > λ1 − H} of its eigenvalues will
not obey the above inequality. The critical energies constructed from these eigen-
values, va = −λk/2 + H 2/2(λ1 − λk), k ≤ n, will fall in the interval (v+, v−).
However these energies are not critical values, since the corresponding critical
point solutions do not lie on the sphere S

N−1. From the expression for V −
i i , we

see that n is just the index of the critical point x−, which gives the dimension
of the cell that is attached to the disk at v−. It can be proved(21) that the result
of this attachment is homotopy equivalent to the attachment of the same cell to
a point. The manifold Mv for v ∈ (v−, v2) is therefore homotopically equivalent
to a sphere of n dimensions, which is the only possible result of the attachment.
Notice that for large values of N , n becomes macroscopic, i.e. proportional to N .
We then see that in the interval (v+, v−) there are no topological changes in the
manifolds Mv , which have the homotopy type of a point, and that at v− an abrupt
change in the topology takes place: the manifold has then the homotopy type of a
sphere with a macroscopic number of dimensions (see the jump of c(v) in Fig. 2).

The critical point solutions arising at the critical energies va > v− are degen-
erated, as a consequence of the degeneracy of the eigenvalues of the adjacency
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Fig. 2. Degeneracy density c(v) and relative index d(v) of the critical manifolds, for a finite field. A
delta function is assumed at the discontinuity point in the graphs of the left column.

matrix. It is possible to calculate the indexes of these critical submanifolds, which
turn out to be identical to the case of vanishing field. Since the function va(λk)
is a monotonously increasing function for decreasing eigenvalues, the index of
the critical submanifolds as a function of v, d(v), starting from vth , is the same
function as in the case of H = 0 (see Fig. 2).

The main difference with the results in the previous section is that in this case
the connection between the index and the topology of the Mv is less obvious. We
have not been able to identify the homotopy types for all values of v. Using Bott’s
extension of Morse theory(22) it is possible to determine the submanifolds that are
attached at each critical point from d(v). But this is not sufficient to determine the
homotopy type of the manifolds Mv .

Nevertheless we have been able to find exactly the topological change that
takes place at v−, and have shown that it is macroscopic. It may come as a
surprise that this very abrupt change in topology has no correspondence with a
thermodynamical phase transition.



1244 Risau-Gusman, Ribeiro-Teixeira and Stariolo

5. ENSEMBLE EQUIVALENCE

The results from the topological analysis are to be compared to the a priori
known thermodynamical behavior of the system. In systems for which ensemble
equivalence does not hold, ambiguity arises, as to which ensemble’s behavior the
topological outcome should be compared to. Recently, M. Kastner (6) found that for
the mean field spherical model, the microcanonical and canonical ensembles are
only partially equivalent. While in the latter ensemble a continuous PT occurs, the
former one displays no PT, and the thermodynamics of both ensembles coincide
in the low energy phase. This finding put in a new perspective the conclusions of
Ref. 14 about the topological mechanism for phase transitions. This is why, in this
section, the microcanonical thermodynamics of the Berlin and Kac spherical model
is further discussed. It is a known fact that ensemble equivalence is guaranteed
as long as the interactions decay rapidly enough with distance. Although we are
dealing here with the spherical model with nearest neighbor interactions, the
presence of the spherical constraint might play – in the thermodynamic limit – the
role of an infinite ranged interaction. Although the canonical PTs have been shown
to be uncorrelated to the discontinuities in the derivatives of c(v), we could expect
the results from topology to lead to a different interpretation when compared to
microcanonical thermodynamics, in case the two ensembles do not coincide.

Behringer (26) already demonstrated ensemble equivalence in the model by
showing that the canonical and microcanonical critical exponents obey the ap-
propriate relation (in this system, they coincide), and that the microcanonical
PTs exist for the same lattice dimensions as the canonical PTs. We, alternatively,
verify ensemble equivalence using the criterion defined in Ref. 27, by showing
that the microcanonical entropy and Legendre transform of the canonical free
energy, s(v) and s∗∗(v) respectively, coincide in their entire domains of definition
and, furthermore, that the first derivative β = ∂s(v)/∂v spans the whole interval
[0,+∞).

The starting point for the microcanonical thermodynamics computation is
the density of states

�N (v, H ) = A−1
N

∫
. . .

∫

�

dε1, . . . , dεN δ[V (ε) − Nv], (14)

where V (ε) is given by Eq. (1).
After some algebra, analogous to the one carried out in Ref. 16 for the

canonical ensemble we arrive at

�N (v, H ) ∝
+i∞∫

−i∞
dµ

α+i∞∫

α−i∞
dη eNs̄N (µ,η;v,H ), (15)
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where we have defined s̄N (µ, η; v, H ) ≡ µv + η − µ2 H 2 [4(µd − η)]−1 −
fN (µ, η) and fN (µ, η) ≡ 1

2N

∑
p ln(−µ

2 λ(p) + η).

In the limit N → ∞, we have f (µ, η) = 1
2

1
(2π)d

∫
. . .

∫ 2π

0 dω1, . . . , dωd ln(−
µ

∑d
l=1 cos ωl + η).
Applying the saddle point method, the density of states is given by

�N (v, H ) ≈ π N/2 eNs̄N (µs ,ηs ;v,H )

π
√

N AN [(s̄N )ηη(s̄N )µµ]1/2
, (16)

where the saddle point (µs, ηs) is solution of the equations ∂ s̄N /∂µ = 0 and
∂ s̄N /∂η = 0, and (s̄N )ηη > 0 and (s̄N )µµ > 0 are the second derivatives of the
function calculated at the saddle point. Considering η and µ over the real axis,
with µ ∈ [−η/d, η/d] and η > 0, s̄N → ∞ whenever µ → ±η/d. Thus, |s̄N | has
at least one minimum over the real axis. Moreover, (s̄N )µµ and (s̄N )ηη for real µ

and η are non-negative, which means that this minimum is unique.
Defining x ≡ η/µ (in this case, we choose real x ∈ [d,∞)), it is possible to

reduce the two-dimensional saddle point system of equations to a one-dimensional
one(29)

[
v + x − 1

A0(x)

]
− H 2

[
1

4(d − x)
− 1

4(d − x)2

1

A0(x)

]
= 0, (17)

where A0(x) ≡ 1
(2π)d

∫
ddω

x−∑d
l=1 cos ωl

=∫ ∞
0 dt e−xt (I0(t))d . (28) Moreover, from the

original saddle point equations we get µs = 2(d − x)/[4(v + x)(d − x) − H 2].
For d ≥ 3, the integral A0 remains finite at x = d. For d = 1, 2 and at x = d,

the integral diverges.
Including the constant prefactors coming from �N , and substituting for

µs as a function of x , v and H , we get, for the entropy density s =
limN→∞ 1

N ln �N (v, H ) = −1/2 − ln(2)/2 + s̄, which may also be expressed as
a function of x alone

s(v, H ) = 1

2
ln

[
(v + x(v, H )) − H 2

4(d − x(v, H ))

]

− 1

2(2π )d

∫
ddω ln

[
x(v, H ) −

d∑

l=1

cos ωl

]
, (18)

where x(v, H ) is the solution x of Eq. (17).
From the second term of s(v, H ), we see that as x → d+, the system ap-

proaches a non-analyticity point of the integral. Thus, the occurrence or not of a
phase transition will be determined by the behavior of the integral A0 at x = d.

First we fix H = 0. For d = 1, 2, as mentioned before, A0 diverges, which
implies vc = −d. Thus, the ferromagnetic phase can only arise at the ground state.
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For d ≥ 3, however, the critical values vc are clearly above −d:

vc = 1∫ ∞
0 dt [e−t I0(t)]d

− d. (19)

These values do indeed coincide with the critical energies from the canonical
ensemble. For finite field, as x → d+, since A0 > 0, the expression that multiplies
H 2 in Eq. (17) diverges. Thus, for H 	= 0, the saddle point solution x = d never
exists, and consequently, no phase transition occurs for any d.

If we compute the equation of state of the system (as in Ref. 26)

m = 1

β

(
∂s(v, H )

∂ H

)

v

=
(

∂s(v, H )

∂v

)−1

H

(
∂s(v, H )

∂ H

)

v

, (20)

we find, for small fields:

m(x(v, H ) − d) ≈ H/2. (21)

Hence we see that the spontaneous magnetization, when H = 0, is only nonzero if
x(v, 0) = d through the ferromagnetic phase. This result expresses the “sticking”
of the saddle-point below the transition, which is also observed in the canonical
computation. (16)

To verify ensemble equivalence, we should be able to show that (27)

s∗∗(v, H ) ≡ inf
β

{βv − β f (β, H )} = s(v, H ), (22)

where f (β, H ) is the Gibbs free energy computed through the partition
function. (16) In other words, that the Fenchel-Legendre transform of f (β, H )
coincides with s(v, H ).

From the canonical results obtained in Ref. 16, we have Eqs. (5) and (6) for
the Helmholtz free energy per particle. The (canonical) saddle point equation is
just Eq. (3), recalling that K = β J/2.

It is clear that d fd (z)/dz = A0(z). The equation defining β̄(v, H ), which
minimizes (βv − β f (β, H )), is

2β̄(v + zs(β̄)) = 1 − H 2β̄

2(zs − d)
. (23)

Substituting into s∗∗(v, H ), and using the saddle point Eq. (3) in the definition of
β̄(v, H ), we see that x(v, H ) defined by (17) coincides with zs[β̄(v, H )], and we
reobtain s(v, H ) of Eq. (18).

The critical energies (19) turn out to be negative. Furthermore, in contrast
to what happens in the mean field case, as v → 0, β → 0 – and, evidently, as
v → −d, β → ∞ – , which means that in this case the paramagnetic phase is
accessible.
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Hence, together with the fact that s(v) = s∗∗(v) for all v ∈ [−d, 0), the fact
that ∂s/∂v assumes all values in [0,∞), shows that complete ensemble equivalence
holds. Contrary to the MF case, (6) there is no ambiguity in the consequences
implied by the topological results of the previous section.

6. LONG RANGE CONNECTIONS

In Ref. 14 the case of a fully connected system was studied, which corresponds
to a mean field approach. This case is very different from the short range model:
the interaction matrix has only two distinct eigenvalues, N and 0, the latter with
multiplicity N − 1. The topological scenario is then a very simple one. There are
only two TTs, one at the minimal potential energy and the other at the maximum.
This last one corresponds to a thermodynamic phase transition (in the canonical
ensemble) taking place at βc J = 1.

To probe a bit further the concept of the sufficiency condition for a TT to be
able to induce a PT, it is interesting to study what happens when the connections
are long ranged but do not span the whole lattice. To be specific, we consider the
following two cases.

In the first case each spin interacts with its closest aN neighbors (a < 1). As
the number of connections of each spin is proportional to N , the potential energy
must be rescaled accordingly (by dividing it by N ) to obtain meaningful results.
This entails a rescaling of the eigenvalues of the adjacency matrix. The matrix for a
d-dimensional lattice is a circulant block matrix where each block is the (circulant)
adjacency matrix of a suitable d − 1 dimensional lattice. Its eigenvalues can be
recursively calculated using simple properties of circulant matrices. In the infinite
N limit we get

λp1,...,pd (a) = 1

πd

d∑

i=1

pd−2
i gd (2πa1/d pi )∏d

k 	=i (p2
i − p2

k )
for d ≥ 2

λp(a) = 1

π

sin(2πa p)

p
for d = 1 (24)

where pi = 1, . . . , N 1/d for all i and gd (x) = (−1)d/2 cos(x) if d is even and
gd (x) = (−1)(d−1)/2 sin(x) if d is odd.

In the second case each spin interacts with all the hypercube of side
2aN that has it as center (extended Moore neighbourhood), the eigenvalues of
the connection matrix are λp1,...,pd = ∏d

i=1 λpi (a
1/d ), where λpi = λp, given by

Eq. (24).
Thus, similarly to what happens for the short range model discussed before,

in these cases there is an infinity of values of v at which TTs occur. The main
difference now is that the spectrum is discrete. As it is unreasonable to postulate
the existence of an infinity of PTs one should look for some special feature of



1248 Risau-Gusman, Ribeiro-Teixeira and Stariolo

the spectrum that can be associated to a PT. One such feature is an accumulation
point. It is easy to see that the mentioned models have only one accumulation
point, occurring at λ = 0.

Because of the discreteness of the spectrum and the accumulation point at
λ = 0, the thermodynamics of these models turns out to be remarkably simple.
The function fd (z) (see Eq. (4)) can be readily calculated and it gives, for all
dimensions in both models, fd (z) = ln(z) in the thermodynamic limit, as in the
fully connected model. Using the fact that the critical saddle point zc = a/2,
and replacing this in Eq. (3) we obtain that the critical temperature of the PT is
βc = a/J . This corresponds to v = 0, as in the fully connected model. (14) This is
not a coincidence: using the same reasoning it can be shown that, if the connection
matrix had a discrete spectrum with an accumulation point at some value λ < a/2
(and therefore fd (z) = ln(z − λ)), the PT would occur at exactly v = Jλ (and
βc = (a − 2λ)/J ).

When a field is turned on, the situation is also the same as for the fully
connected model: no PT appears and the TT is in a place of configuration space
that cannot be thermodynamically reached by the system.

7. CONCLUSIONS

We have characterized exactly the homology of the successive manifolds
of configuration space of the short range spherical model. We have shown that
even though there is a continuum of topological transitions, a function of the
topology — which completely characterizes it — can be defined for which some
discontinuities in the function itself (H 	= 0) or in its derivatives are found at
specific v points. However, they are not coincident with the phase transitions which
occur for vanishing external field. The topological transitions which do happen at
the PT points are ‘smooth,’ and do not display any particular distinguishing feature.
If these TTs were to be related to the origin of the corresponding PTs, we could
not expect them to be the only active mechanism. Moreover, the occurrence of the
above mentioned discontinuities, which do represent abrupt topological transitions,
having no relation to any PT, challenges the expectation that a topological transition
in the Mv’s may have any relevant role in the origin of the phase transition. Hence,
the topological approach does not apply to this model.

The proof that for short-range, confining, stable potentials, a topological
transition must take place at the point of the phase transition, (13) implies that
topology ought to play some role in this event, at least for this class of potentials.
So far, the models where topological hypothesis applies do not satisfy at least one
of the conditions of the theorem, and thus do not fall into this class. On the other
hand, among the models that were found to violate the topological hypothesis,
none fulfills all the conditions of the theorem. In particular, except for the model
analyzed in Sec. 4, none is short ranged. For topological transitions to be defined
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as a possible sufficient mechanism to originate a PT, it would be necessary to
establish a class of potentials to which it applies, and a sufficiency condition on
the type and/or ‘strength’ of the topological transitions involved. Such results are
still lacking. Although the spherical model we study here is short ranged, confining
and bounded below, it might not satisfy one of the conditions of the theorem. This is
the condition that the potential be additive, which essentially says that for a system
of 2N spins this potential should satisfy V (2N ) → V (N ) + V (N ) in the infinite
N limit. Now it is not clear how to define additivity in presence of the spherical
constraint. Whether or not the spherical model is excluded by the requirements
of the theorem, its implications are not significant for this model, because in the
N → ∞ limit we have a continuum of TTs, and therefore the simple existence of
topological transitions is not enough to predict phase transitions. Hence, the role
played by topology in the phase transition seems irrelevant in this case. To look
for the effect of the PES topology on the phase transition of a model fulfilling all
the requirements of the theorem would be a very elucidative contribution to the
field. As far as we know, the short range spherical model is, among the models
already studied, the closest one to this class of potentials.

The increasing number of models for which the topological mechanism seems
to be at least insufficient, and moreover, in some cases, completely decorrelated
from the occurrence of phase transitions, puts in doubt the possibility of an origin
of these phenomena at the level of microscopic interactions (in the sense exploited
in the Introduction of this paper). In particular, in view of the latest negative results
on the TH, recent works on the φ4 mean field model (30,31) have led to the proposal of
alternative mechanisms as responsible for the triggering of a phase transition. Hahn
and Kastner found that the nonanalyticity in the microcanonical entropy density
function of the φ4 MF model arises only as a consequence of its maximization
with respect to the magnetization. This is a totally distinct mechanism from the
topological one, since the topological approach suggests that the possible origin of
PTs could be found before the definition of statistical ensembles. This mechanism
is relevant, in particular, for the characterization of phase transitions within the
microcanonical ensemble.

This maximization mechanism, however, is only possible for long range in-
teractions, and thus certainly does not apply to the short range spherical model.
Within this perspective, one should search for at least a third mechanism re-
sponsible for the PTs in the model here studied. Moreover, in the case of non-
confining potentials, yet another possible ‘singularity-generating’ mechanism has
been pointed out, namely, the loss of compactness of the manifolds �v or Mv . But
this multiplicity of very distinct mechanisms seems to undermine the appealing
and pretended universality of the original topological hypothesis.

The topological properties of the PES are known to have important effects
on the dynamics of systems with and without disorder (see e.g. Refs. 32 and 33).
Indeed, the dynamical transition in the p-spin spherical spin glass, for example,
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is known to be related to the vanishing of the order of the saddles in the PES
at a given value of the energy. (34) A similar topological mechanism is at work
at the mode coupling dynamical singularity in structural glasses. (35,36) Several
dynamical properties at the dynamical singularity are related to the occurrence
of zero eigenvalues of the hessian of the potential energy (flat directions on
the PES).(32−34) Since the first proposal of the topological approach it has been
advanced that it might serve as a unifying formalism for the diverse kinds of phase
transitions, including dynamical PTs. This possibility, as far as we know, has not
yet been explored in any of the models that display a dynamical PT.

With regard to the spherical model studied in this paper, one intriguing
question that arises is whether the topologically abrupt changes that we have
found, in particular the discontinuity in the functions d(v) and c(v) in the case of
nonvanishing field, can have any influence on the dynamics of the model.

APPENDIX A: DEFORMATION RETRACTION OF Mv FOR H = 0

In this section we show that Mv is homotopically equivalent to S
D−1, where

D = max {k : λk > −2v}. In fact we prove that S
D−1 is a deformation retract of

Mv , which in turn implies their homotopy equivalence. (21)

A submanifold S is a deformation retract of a manifold M if there exists a
series of maps f ν : M → M with ν ∈ [0, 1], such that f 0 = I , f 1(M) = S and
f ν |S = I for all ν. The map when considered as f : M × [0, 1] → M must be
continuous.

Let us take v ∈ (va, va+1), where va = −λk/2, k ∈ Ca . The deformation
retraction that takes the manifold Mv onto its submanifold S

D−1 is given by
x(ν) = ( f ν

1 (x), . . . , f ν
N (x)) with

f ν
i (x) =

⎧
⎪⎨

⎪⎩

xi

√
1 + ν

∑N
k=D+1 x2

k /
∑D

k=1 x2
k for i ≤ D

xi

√
1 − ν for i > D

(25)

The properties for ν = 0 and ν = 1 are evidently fulfilled. It can also be seen
that no points are mapped outside Mv . It is easy to see that the image points always
lie on the sphere S

N−1, but it must also be checked that their potential energy
does not exceed v. For this, let us define a trajectory as the set of points resulting
of applying all the maps f ν to a single point in Mv . The potential energy of the
points in the trajectory, V ν(x) = V (x(ν)) is a linear function of ν. Thus, it must
be bounded by the potential energy of the endpoints. The initial point, ν = 0 has
V (x) < v by definition. The final point is on the sphere S

D−1, where

V (x ∈ S
D−1)

N
=

D∑

k=1

−λk

2

x2
k

N
<

D∑

k=1

v
x2

k

N
= v (26)
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using the definition of v. We have used the fact that the trajectory is continuous,
which depends on the continuity of the map, which can be readily checked. Indeed,
Eq. (25) implies that the map can only be discontinuous in points xd such that
xi = 0 for i ≤ D, but this point satisfy

V (xd )

N
=

N∑

k=D+1

−λk

2

x2
k

N
≥

N∑

k=D+1

v
x2

k

N
= v (27)

and thus they are outside Mv .

APPENDIX B: UNIFORM CONVERGENCE

The Bessel function of order 0 can be written as Ref. 37:

J0(x) =
√

2

π x
{cos(x − π/4) + f (x)} (28)

for x > 0, where f (x) satisfies | f (x)| ≤ (2x)−1. We want to study the convergence
of the k-th derivatives of c(v) (Eq. (13)) for all values of k, i.e., of the functions

gk(v) =
∣∣∣∣
∫ ∞

0
dx xk fk(xv)[J0(x)]d

∣∣∣∣ (29)

where fk(xv) = sin(xv) for odd k and fk(xv) = cos(xv) for even k. Because the
integrand is continuous everywhere and in particular in the neighbourhood of 0,
the convergence of the integral with r > 0 as lower limit implies the convergence
of the one in Eq. (29).

Using Eq. (28), we get
∫ ∞

r
dx xk fk(xv)[J0(x)]d

∝
d∑

i=0

(
d

i

)∫ ∞

r
dx xk−d/2 fk(x v)(cos(x − π/4))d−i ( f (x))i (30)

The bounds on f (x) imply that this expression converges (uniformly) if the
term with i = 0 converges uniformly, which happens for k smaller than d/2 − 1,
for all values of v. Therefore, the derivatives of c(v) up to the order k = �d/2 − 1

can be taken inside the integral and the resulting function is continuous. (38) For
k > d/2 Eq. (30) diverges and therefore the derivative must be calculated by a
different method (this does not imply that these derivatives diverge).

For d/2 − 1 ≤ k < d/2 a finer analysis must be performed. Again, only
the first integral in the summation must be studied, because the rest of them
converge uniformly. Using elementary properties of the trigonometric functions
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we obtain,
∫ ∞

0

dx

ĝd (x)
fk(vx) [cos(x − π/4)]d (31)

= 2−d−1
d∑

j=0

(
d

j

) ∫ ∞

0

dx

ĝd (x)

{
fk

[
(d − 2 j)

π

4

]

× [cos((d − 2 j − v)x) + (−)k cos((d − 2 j + v)x)]

+ fk+1[(d − 2 j)
π

4
] × [sin((d − 2 j + v)x)

+ (−)k sin((d − 2 j − v)x)]

}

where ĝd (x) = x for even d and ĝd (x) = √
x for odd d. When none of the argu-

ments of the cosines inside the brackets vanishes identically, the integrals converge
uniformly(38) (they are, in fact, Fresnel integrals). But for some integer values of
v there is in the sum one term that diverges, because the corresponding integrand
is 1/ĝd (x). These values are: odd v if d is odd, even v/2 if d/2 is odd, and odd
v/2 if d/2 is even.

This shows that up to k < d/2 − 1 the derivatives can be obtained by taking
derivatives inside the integral and they are continuous in v ∈ [−d, d]. For k =
�d/2 − 1� the derivative obtained has some discontinuity points where it diverges.
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